Time : 2 Hours]
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Questions 2 to 5 carry equal marks.

Q1) Attempt any five of the following:
a) While loop is entry controlled loop. State true or false.
b) What is difference betweengetchan and gets?
c) Write a pseudocode to check number is positive or negative.
d) What is recursive function?
e) Array is homogeneous, data structure. Justify.
f) Write a pseudocode to find out addition of first 20 numbers and print it.

Q2) a) Attempt any two of the following :

$$
[2 \times 3=6]
$$

i) Explain for loop with the help of suitable example.
ii) Explain automatic and external storage class.
iii) What is the output of following C code? Justify. Void main() \{ int $\mathrm{i}=1$; while ($\mathrm{i}<=13$)

$$
i=i+2 ;
$$

b) Write a C program to accept a number \& find out reverse of a number. ぶं $[1 \times 4=4]$

Q3) a) Attempt any two of the following :
$[2 \times 3=6]$
i) Explain different notations used in flowefart.
ii) Explain following operators

1) Increment and decrement.
2) Relational.
iii) What is the output of following C code? Justify. main() \{ int x, y, answer;
$\mathrm{x}=10$;
$y=20$;
answer $=$ predict $(x, y+2)$;
printf("\%d", answer);
int predict (int a, int b)
\{
int temp;
temp $=10+\mathrm{a} * \mathrm{~b}$;
return temp;
\}
b) Write a C program to accept ' n ' numbers into array and find out maximum and minimum number from array.
$[1 \times 4=4]$

Q4) a) Attempt any two of the following :
i) Explain built-in data types.
ii) Explain the use of break and continue.
iii) What is output of following C code? Justify. main()
\{

$$
\text { int } a[5]=\{5,1,15,20,25\} ;
$$

. $\operatorname{printf(*\% d~\% d~\% d",~i,~j,~m);~}$
b) Write a C program to find out factorial of a number using user defined function.
$[1 \times 4=4]$

Q5) Attempt any two of the following
$[2 \times 5=10]$
a) Explain the types of array.
b) Explain row major and column major ordering.
c) Write an algorithm and draw flowchart to find out sum of digits of a number.

\square

F. ${ }^{\text {B. Be. }}$
 COMPUTER SCIENCE CS - 112. Database Management Systems (New CBCS 2019Pattern) (Semester - I) (Paper - II)

Time: 1^{112} Hour]
[Max. Marks: 35
Instructions to the candidates:

1) $Q .1$ is cempulsóy.
2) Solve any three questions from Q. 2 to Q.5.
3) Questionzto 5 carry equal marks.

Q1) Solve any five of the following:

$$
[5 \times 1=5]
$$

a) What is data independence?
b) Define candidate key.
c) What is aggregation?
d) Primary key of one relation asts as reference key to another relation. State true or false.
e) What is relation?
f) Consider a relation student (roll no, name, per) and write a query in SQL : list names of student having per less than 75.

Q2) a) Attempt any two :

$$
[2 \times 3=6]
$$

i) Write a note on Data models.
ii) What is decomposition? What are the acesirable properties of decomposition?
iii) What is normalization? Which are thedifferent types of it? What is use of it in DBMS.
b) Consider the following relations :

Country (con-code, name, capital)
Population (pop-code, population)
Country and population are rethated with one to one relationship. Create a RDB and solve the following queries in SQL.
i) Give the name and @opulation of country whose capital is "Delhi".
ii) List the name of all the countries whose population is greater than 250000
iii) Delete the country whose capital is "Tokyo".

Q3) a) Attemptany bwo:
$[2 \times 3=6]$
i) Explain various types of users in DBMS.
ii) Compare DBMS with RDBMS.
iii) Define primary key, super key and referencekey.
b) Consider the following relations:

Person (P-no, pname, address)
Car(C-no, year, model)
Person and Car are related with one to mány relationship. Create a RDB and solve the following queries in SQL .
i) List the names of all people who own 'BMW' car.
ii) Delete all the details of the person 'Mr. Kadam'.
iii) List the persons who own the car in year 2018.

Q4) a) Attempt any two:
i) Write a note on E-R data model.
ii) Explain any three aggregate functions in SQL with propepexample.
iii) Write any three armstrong's axioms.
b) Consider the following relations game (gno, gname, no-of-player, coach-name, eaptain) player (pno, pname)
Game and player are related with many to many relation. Create a RDB and solve the following queries in SQL .
i) List the name of players playing 'football' and 'hockey'.
ii) List all the games whose coach is "Mr. Ramesh".
iii) List the name of players playing yame 'Basketball'.

Q5) Attempt any two :
a) Consider relation schema $\mathrm{R}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ and set of functional dependencies defined on R as
$\mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{CD} \rightarrow \mathrm{E}, \mathrm{DE} \rightarrow \mathrm{B}\}$ check whether ABD is a super key?
b) Car insurance company has a set of customers, each of whom owns one or more cars. Each cars associated with zero to any number of recorded accidents
i) Draw an $\mathrm{E}-\mathrm{R}$ diagram.
ii) ConvertE-R into RDB in 3NF.
c) What do you mean by an integrity constraint? Explain any two with example.

Time : $1^{1 / 2}$ Hours]
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Use of single memory, non-programmable scientific calcylators is allowed.

Q1) Attempt any five of the following:
a) Describe the nature of the solution of the following system of linear equations.

$$
\begin{aligned}
& x+y=1 \\
& x-y=1
\end{aligned}
$$

b) Find an elementary matrix.E such that $\mathrm{EA}=\mathrm{I}$, where $\mathrm{A}=\left[\begin{array}{cc}1 & 0 \\ -5 & 1\end{array}\right]$
c) If $u=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, then compute
i) $u+7 v$
ii) $\sqrt{2} u$
d) State Rank Nullity theorem for matrix.
e) Suppose a 4×7 coefficient matrix for a systen of linear equations has 4 pivots. Is the system consistent? How many solutions are there?
f) Write the standard matrix for transformation that gives reflection through x_{1} - axis.

Q2) a) Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Prove that T is one to one if and only if the equation $T(X)=0$ bas only trivial solution.

Find the general solution of the following system :
$x_{1}-7 x_{2}+6 x^{2}$
$x_{3}-2 x_{4}=3$
$-x_{1}+7 x_{2}+4 x_{8}+2 x_{4}=7$
b) Find the determinant of following matrix

$$
A=\left[\begin{array}{cccc}
3 & 4 & -3 & -1 \\
3 & 0 & 1 & -3 \\
-6 & 0 & -4 & 3 \\
6 & 8 & -4 & -1
\end{array}\right] .
$$

Q3) a) Let $\mathrm{A}=\left[\begin{array}{ccc}3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 6\end{array}\right]$ and $b=\left[\begin{array}{c}5 \\ 5 \\ 2\end{array}\right]$
Use LU decomposition tơ solve $\mathrm{AX}=b$.
OR
If A is a $m \times n$ matrix, $u, v \in \mathbb{R}^{n}$ and C is a scalar then (prove that
i) $\mathrm{A}(u+v)=\mathrm{A} u+\mathrm{A} v$.
ii) $\mathrm{A}(\mathrm{C} u)=\mathrm{C}(\mathrm{A} u)$.
b) Determine if the vectors $\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}7 \\ 2 \\ -6\end{array}\right],\left[\begin{array}{c}9 \\ 4\end{array}\right]$ are hinearly dependent.

Q4) a) Find inverse of the following matrix A by row reduction method

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Find the basis for COIA and for NolA, where $A=\left[\begin{array}{cccc}4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3\end{array}\right]$.
b) Let $\nabla \mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation, defined as

$$
\begin{aligned}
& \mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right) \text { Find } \times \mathrm{X} \text { such that } \\
& \mathrm{T}(\mathrm{X}) \hat{=}(-1,4,9) .
\end{aligned}
$$

Q5) Attemptany two of the following :
a) Find $A B$ using the partitioned matrices shown below,

$$
\left.A=\left[\begin{array}{ccc|cc}
2 & -3 & 1 & 0 & 4 \\
1 & 5 & -2 & 3 & -1 \\
\hline 0 & -4 & -2 & 7 & \text { and } B=
\end{array}\right] \begin{array}{cc}
6 & 4 \\
-2 & 1 \\
-3 & 7 \\
\hline-1 & 3 \\
-5 & 2
\end{array}\right]
$$

b) Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that,

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
5
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
6
\end{array}\right]
$$

Find the images of $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\left[\begin{array}{l}-5 \\ -3\end{array}\right]$.
c) Use Cramer's rule to compute the solutions of following system :

$$
\begin{aligned}
& x+y+2 z=7 \\
& -x-2 y+3 z=6 \\
& 3 x-7 y+6 z=1 .
\end{aligned}
$$

$$
t+t+
$$

F.Y. B.Sc. (Computer Science)

MATHEMATICS
 MTC-112; Discrete Mathematics
 (2019Pattern) (Paper - II)

Time : 2 Hours]

[Max. Marks: 35
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Figures to the right indicate full marks.
4) Neat diagrams must be drawn whenever necessary.
5) Use of single memory, non-programmable scientific calculator is allowed.

Q1) Attempt any five of the following:
a) Write the Negation of the statement: $\forall x,\left(x^{2}>x\right)$.
b) Determine if the poset $\left(\mathrm{B}_{30 \%} / \mathrm{l}\right.$) is a Boolean algebra.
c) Define : Partial ordeprelation.
d) How many bit strings of length 8 contain exactly three 1 's?
e) How many different license plates are available if each plate contains a sequence of three letters followed by three digits?
f) Find the two terms a_{2} and a_{3} of the sequence defined by the following Recurrence relation :

$$
a_{n}=a_{n-1}+3 a_{n-2}, a_{0}=1, a_{1}=2 .
$$

Q2) a) Show that the hypothesis "If it rains then lwear a raincoat," "If it shines then I do not need a sweater," "Either it rains or it shines", "Moreover, I do need a sweater", lead to the conclusion," "I wear a raincoat". (Use rules of inference).

Consider a Boolean expression.
$\mathrm{E}(x, y, z)=(\bar{x} \wedge z) \vee(y \wedge z)$
Find Disjunctive Normal fonn of the expression.
b) Define a relation \mathbb{R}^{\prime} onset of non-zero real numbers \mathbb{R} as
' $x \mathrm{R} y$ if and only if $x<>0$ '.
Show that R is an equivalence relation.

Q3) a) i) Let $[[L, \vee, \wedge]$ be a bounded and distributive lattice.
Prove that: If a complement of an element exists, then it is unique.
ii) Find the complement of each elementof a lattice $\left(\mathrm{D}_{20}, l\right)$, if exists.

Let $\mathrm{A}=\{1,2,3,4,5\}$. Defme a relation R on A as
$\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
Find the transitive closure of R using Warshall's algorithm. Also draw the diagraph.
b) Solve the following Recurrence relation.

$$
a_{r}-20 a_{r-1}+100 a_{r-2}=0, a_{0}=1, a_{1}=20 .
$$

Q4) a) Find the number of integers between 200 and 500 (both inclusive) which are divisible by 2 or 3 or 7 ?

Show that if any five numbers from 1 to 8 are chosen, then two of them will add to 9 .
b) Let $\mathrm{A}=\{1,2,3,4,5\}$. Determine the truth values of each of the following statements.
i) $\quad \exists x \in \mathrm{~A}(x+3=12)$
ii) $\quad \forall x \in \mathrm{~A}(x+3<12)$
iii) $\exists x \in \mathrm{~A}(x+3=5)$
iv) $\forall x \in A(x+3 \leq 8)$

Q5) Attempt any two of the following:
a) Prove that: $\sqrt{2}$ is an irrational no. by indirect method.
b) In how many ways 20 different toys can be distributed among 5 children so that
i) two children get 7 toys each and remaining 3 children get 2 each.
ii) each get 4 toys.
c) Find the particular solution of the recurrence relation.

$$
a_{r}+5 a_{r-1}+6 a_{r-2}=3 r^{2}-2 r+b
$$

$\frac{1}{x^{2}+t+}$

F.Y. B.Sc. (Computer Science)

ELECTRONIC SCIENCE

ELC - 111 : Semiconductor Devices and Basic Electronic Systems

(Semester - I) (New Pattern) (CBCS - 2019) (Paper - I)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Questionzto 5 carry equal marks.
4) Draw neat labelled diagram wherever necessary.

Q1) Solve any five of the following : $[5 \times 1=5]$
a) Define the term PIV for a diode.
b) Draw symbols for :
i) n-p-n transistor.
ii) p-n-p transistor.
c) Name two substances that produce piezoelectric effect.
d) State two types of MOSFET.
e) Define Accuracy with refrance to DAC.
f) What is ripple?

Q2) a) i) With the help of circuit diagram explain working of full wave rectifier using diode.
ii) For 4 bit R-2R ladder find the following

1) Full scale output voltage.
2) Analog output voltage for digital input.
I) 1010
II) 1101 .
b) Distinguish between $\mathrm{CC}, \mathrm{CB} \& \mathrm{CE}$ configurations of transistor.

Q3) a) i) Draw the block diagram of online UPS and explain it's operation in "Mains ON" mode.
ii) Explain working Enhancement mode MOSFET.
b) Explain construction and working of photo diode.

Q4) a) i) Draw diagram \curvearrowleft Halfwave Rectifier with Filter capacitor. Explain role of capacitor in this circuit.
ii) Explain working of MOSFET as a switch.
b) Drawdiagran of Wien bridge oscillator. $\mathrm{R}_{1}=1 \mathrm{k} \Omega \mathrm{C}=0.22 \mu \mathrm{~F}$. Calculate the frequency of Wien bridge oscillator.

Q5) Attempt any four of the following:

$$
[4 \times 2.5=10]
$$

a) Draw block diagram of successive approximation ADC.
b) Explain how BJT works as a switch.
c) Write a short note on Zenereffect.
d) An Actable 555 timer has $R_{A}=8 \mathrm{k} \delta, \mathrm{R}_{\mathrm{B}}=4 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. What is the output frequency.
e) Define α and derive and expression for α intern's of β.
f) Write a short note on Op̂tó coupler.

$$
t+t+
$$

\square

ELECTRONIC SCIENCE

Time : 2 Hours]
[Max. Marks: 35
Instructions to the candidates:

1) Q. 1 is compulsory.
2) Solve any three questions from Q. 2 to Q.5.
3) Questions 2 to 5 carry equal marks.

Q1) Solve any five of the following:

$$
[5 \times 1=5]
$$

a) $(1)_{2}+(1)_{2}+(1)_{2}=(?)_{2}$.
b)

i) NAND.
ii) NOR.
iii) NOT.
c) For a demultiplexer with 24 outputs the number of control inputs are \qquad
d) Find 1's complement of (25) $)_{10}$.
e) Define noise immunity.
f) "Multiplexer circuit can be built by using OR OR combinations of logic gates". State whether this statement is true or false.

Q2) a) i) Perform $(100)_{10}-(33)_{10}$ using 2 's compleinent method.
ii) Solve following equation using Boolean Algebra

$$
\begin{equation*}
\mathrm{Y}=\overline{\mathrm{A}}(\mathrm{~B}+\mathrm{C})+\overline{\mathrm{C}}+\mathrm{AB} \tag{3}
\end{equation*}
$$

b) Draw symbol and truth table of NAND and EX-OR Gate.

Q3) a) i) Convert the following expression into standard SOP form.

$$
\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{C}}
$$

ii) Explain working of 3×4 matrix keyboard encoder.
b) Draw and explain workingiof $1: 4$ demultiplexer.

Q4) a) i) Simplify the following expression using K map
$\mathrm{Y}=\overline{\mathrm{P}} \overline{\mathrm{Q}} \mathrm{R}+\overline{\mathrm{P}} \overline{\mathrm{Q}} \overline{\mathrm{R}}+\mathrm{PQ} \overline{\mathrm{R}}+\overline{\mathrm{P}} \mathrm{Q} \overline{\mathrm{R}}+\overline{\mathrm{P}} \mathrm{QR}$
ii) Draw logic circuit diagram for BCD to 7 segment converter. Give the 'otic levels to display digit ' 9 ' on commontanode display. [3]
b) Perform the following
i) $(11011)_{\text {gray }}=(?)_{2}$
ii) $\quad(\mathrm{A} 5 \cdot \mathrm{D})_{16}=(?)_{10}$

Q5) Attempt any four of the following:
a) Write a short note on $B C D$ code.
b) State and prove De-Morgan's theorem.
c) Explain use of EX OR gate as parity generator.
d) Write the truth table for 3 bit binary to gray conversion.
e) Define following :
i) Fan in
ii) Fan out.
f) Explain working of half Adder.

F.Y. B.Sc. (Computer Science)

STATISTICS
 CSST-111: Descriptive Statistics (Semester (1) (2019 Pattern) (Paper - I)

Time : 2 Hours]

[Max. Marks: 35

Instructions to the candidates.

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable, scientific calculator is allowea.
4) Symbols have their usual meaning unless otherwise stated.

Q1) a) Select the most appropriate option foreachof the following: [1 each]
i) The limits for Bowley's coefficientof skewness are :

1) ± 3
2) O to 3
3) ± 1
4) $\pm \infty$
ii) If each observation in a data set is multiplied by a positive constant, the arithmetic mean of the resultant variable \qquad .
5) is unaltered
6) increases
7) decreases
8) is not known
iii) Attributes A and B are said to be independent if \qquad
9) $(\mathrm{AB})>\frac{(\mathrm{A}) \times(\mathrm{B})}{\mathrm{N}}$
10) $(\mathrm{AB})=\frac{(\mathrm{A}) \times(\mathrm{B})}{\mathrm{N}}$
11) $(\mathrm{AB})<\frac{(\mathrm{A}) \times(\mathrm{B})}{\mathrm{N}}$
12) $\left(\mathrm{AB}_{\mathrm{C}}\right)^{-}=0$
b) State whether the following statements are true or false :
i) If the data is given in centimeters then its mean and standard deviation are also expressed in centimeters.
ii) The limitations of Statistics say that statistical laws are exact.

Q2) Attempt any two of the following:
a) Define Statistics. Discuss the scope of Statistics with an example.
b) Explain the concept of central tendency. Write any three requisites of good measures of central tendency.
c) The mean weight of 150 students in a certain class is 60 kilograms. The mean weight of boys in the class is 70 kilograms and that of the girls is 55 kilograms. Find the number of boys and number of girls in the class.

Q3) Attempt any tyoof the following:
a) The arithmetic mean (A.M.), median and the coefficient of variation of the weekly wages of a group of workers are respectively Rs. 45, Rs. 42 and 40%, Find mode, standard deviation (S.D.) and Karl Pearson's coefficient of skewness.
b) Define the terms :
i) Positive class.
ii) Order of a class.
iii) Continuous variable.
iv) Primary Data.
v) Median.
c) Find the missing frequencies of the following data, given that the AM of heights of students is 67.45 menes:

Height (inches)	$60-62$	$63-65$	$66-68$	$69-71$	$72-74$	Total
No. of students	5	18	$?$	$?$	8	100

Q4) Attempt any one of the following:
a) i) The first four raw moments of a distribution are 2, 10, $40^{\circ}, 218$ respectively. Find the values of β_{1} and β_{2}. Interpret, it.
ii) Explain the term 'Skewness'. Discuss types of Skewness with the help of a diagram.
b) i) Explain the following terms with example.

1) Variable.
2) Quartiles.
3) Standard Deviation.
ii) In a village, there are 500 adults. Out of these 100 adults are literate and 150 are employed. There are 150 adults who are literate as well as employed. Check whether the information is consistent or not.[4]

F.Y.B.Sc. (Computer Science) STATISTICS CSST112 : Mathematical Statistics (2019 Pattern) (Semester - I)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions'are compulsory.
2) Figures to the right indicate full marks.
3) Use $\overline{\text { of }}$ calculator and statistical tables is allowed.
4) Symbols andabbreviations have their usual meaning.

Q1) Attempt each of the following:
A) Fillin the blanks:
(1 Mark each)
a) Suppose A and B are two independent events defined on sample space Ω with $P(A)=0.2$ and then $P(B)=0.4$ $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=$ \qquad
b) The mean of geometric distribution with parameter ' p ' is \qquad .
B) Choose the most appropriate alternative for each of the following:
(1 mark each)
a) If X is a continuous random variable then $\mathrm{E}(\mathrm{aX}+\mathrm{b})=$ \qquad .
i) $a E(X)$
ii) $E(X)+b$
iii) $a E(X)+b$
iv) $a^{2} E(X)$
b) If A and B are two events defined on sample space Ω sućn that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$, and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ then $\mathrm{f}(\mathrm{A} \cup \mathrm{B})$, is \qquad .
i) $\frac{3}{8}$
ii)

iii) $\frac{1}{2}$
(iv)
c) If X and Y are independent binomial variables such that $\mathrm{X} \sim \mathrm{B}(5,0.3)$ and $\mathrm{Y} \sim \mathrm{B}(8,0.3)$ then the distribution of $\mathrm{X}+\mathrm{Y}$ is.
i) $\quad \mathrm{B}(3,0.3)$
ii) $\mathrm{B}(13,0.3)$
iii) $\quad \mathrm{B}(13,0.6)$
iv) $B(3,0.6)$

Q2) Attempt any TWO of the following. (5 marks each)
a) Explain the following terms:
i) Non-deterministic experiments.
ii) Principles of counting.
b) i) State the Axigms onprobability.
ii) State the Bayes theorem.
c) Out of 10 collections of diamonds, 4 are precious. Three diamonds are stolen. Find the probability that
i) None of the precious diamonds are stolen.
ii) At most one precious diamonds is stolen.

Q3) Attempt any TWO of the following. (5 Marks each)
a) 40% of the students in a certain college are girls. 5% of the students in this college are members of culture club 3% of the students are girls in the culture club. If a student is selected at random, find the probability that:
i) The student is a member of the culture club given that the student is a girl.
ii) the student is a girl given that she is a member of culture club.
iii) The student is a boy'given that he is a member of culture club.
b) Define the following.
i) Conditional probability
ii) Sensitivity
iii) Continuous random variable
iv) Median of a discrete random variable
v) Variance of a discrete random variable
c) State the probability mass function of geemetric distribution. State its variance. Also state any two real life situations where this distribution is used.

Q4) Attempt any ONE of the following.
A) a) The number of yearly breakdowns of a computer is a random variable having Poisson distribution with parameter $m=1.8$. Find the probability that this computer will function for a year:
i) withoutbreakdown.
ii) with ar mostone breakdown.
b) Define distribution function of a continuous random variable X and state its important properties.
B) a) Let X be a continuous random variable having probability density function
$f(\mathrm{x})= \begin{cases}\frac{3}{4} x(2-x) & , 0 \leq X \leq 2 \\ 0 & , \text { Otherwise }\end{cases}$
Find (1) Mean of X (2) Variance of X
b) Describe binomial experiment. Alsostate any two real life situations where binomial distribution is used.

